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1.0 Introduction 
 
Statistical pattern recognition and artificial neural net techniques have been widely applied to tasks such as 

image and speech recognition. The data in these domains is usually continuously valued, limited in dynamic 

range and has a value which changes smoothly as the quality of the speech or image signal changes. It is 
usually possible to form very large training sets of data from these domains so that it is possible to 

accurately estimate the class probability distributions needed for the operation of a statistical classifier, or to 

fully train a neural net classifier. 

 

More recently, statistical and neural net recognition has been applied to decision support problems such as 
fault diagnosis [1] and the prediction of company and individual financial behaviour. The decision support 

domain is typified by data which consists of a mix of symbolic and numerical variables whose dynamic 

range is unlimited and which does not always change smoothly as the state of the system generating the data 

changes. Moreover, due to the difficulty of data collection in the decision support domain, the sets of 

pattern exemplars needed for training a classifier are often small and even incomplete because values for 
some of the attributes within a single example of a pattern may be missing. 

 

One of the attractions of using neural net rather than statistical recognisers in these circumstances is that the 

neural net performs discriminatory learning so that, theoretically, it will learn a good input transformation. 

The input transformation would ideally  "normalise" variables of unrestricted dynamic range, optimally re-
code  arbitrary numerical code chosen to represent symbolic variables and form class discriminatory 

features from non-linear combinations of the raw data attributes [2],[3]. However, in practice, the 

performance surface of the neural net is complex with many local maxima on which gradient ascent 

optimisation may become "stuck", and unless the data applied to the network is sensibly coded in the first 

place, the neural net is unlikely to find a good classification solution.  
 

A better approach than using complex neural networks may therefore be use a very simple neural network 

or statistical recogniser to which is input manually pre-processed pattern data. The desired pre-processing 

would explicitly  normalise attribute values, limit their dynamic range, and code symbolic quantities 

appropriately. It would also deal with the problem of missing data attributes by inserting the optimal default 
values. However, it is not clear exactly how the pre-processing would be done and it is these problems 

which are primarily addressed in this paper. 

 

The paper also presents a number of analysis and visualisation tools which can be used to gain an 

understanding of the structure and "classifiability" of both of the raw and pre-processed data so that the 
usefulness of the pre-processing can be assessed. The use of these tools are demonstrated using  two sets of 

data, one concerning the diagnosis of faults in an electronic system and the other concerning the prediction 

of financial behaviour. 
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2.0 The Process of Pattern Classification 
 
2.1 Feature Space and Class Boundaries: 
Successful pattern classification rests upon the ability to define regions of a feature space which belong to 

the different classes. If a pattern of unknown class is found to lie within a feature space region belonging to 

class, Ci, then the unknown pattern is  classified as Ci. The feature space in which the class regions are 

defined may be the pattern space formed by the raw data measurements, or more usually, it is a space 
formed by a transformation of the original data, such that class separation is improved. Intuitively, class 

separation is enhanced by the transformation in the following ways: 

 

 i) Noisy or otherwise unreliable pattern attributes are reduced in significance. This is  normally 

done by scaling down the attribute relative to the other attributes. 
 

 ii) Pattern attributes whose values are similar for different classes of pattern, are reduced in 

 significance and attributes which provide good class discrimination are increased in 

 significance. The change in significance of the attributes to enhance class separation may  be done 

by either linear or non-linear scaling of the attributes. 
 

 iii)  Disjoint regions of the pattern space which belong to the same class, are transformed  to form 

a single contiguous region in the feature space. 

 
As discussed in the introduction, artificial neural networks are theoretically capable of learning an input 

transformation which embodies all of the desirable properties listed above so that good class separation will 

be obtained in the "feature space" formed by the values of the network output units. Such a transform would 

generally be non-linear and complex and,  in practice, the networks do not reliably learn the appropriate 

transformation. It is  therefore our purpose to explicitly  design a transform. Of course, the designed 
transform is unlikely to be optimal, but it may perform satisfactorily and be better than a poorly trained 

neural net.  

 

The explicit pattern space to feature space transform can be interpreted as a data pre-processing stage in the 

classifier and henceforth the terms input transformation and data pre-processing will be used 
interchangebly. A number of explicitly designed transform types could be relatively simply implemented 

and the properties of these transforms will be briefly described here, although the method of choosing their 

parameters will not be discussed until section 5. 

 
2.2 Linear Scaling of Attributes: 

A transform which only scales the pattern attributes yields feature vectors, F, of the same dimensionality as 

the pattern vectors, A, and can be written formally as the multiplication of the pattern vector into a diagonal 

transform matrix W. The diagonal elements of the matrix are the attribute scaling factors and are usually set 

subject to the constraint that the sum of their squares is a constant. 
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As previously explained, this type of transform allows attributes whose values vary widely, even in 

examples of the same class, to be down-weighted. This causes individual class clusters to become more 
compact and possibly less overlapping. However, there is no guarantee that  class clusters will have 
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enhanced separability after diagonal transformation unless some account is taken of the class separation 

during the evaluation of the transform coefficients. If the transform is to be evaluated using class interaction 

information, then it is just as easy to evaluate a full non-diagonal transform as oulined in the next section. 

However, if class interaction is not to be taken into account, the diagonal transform provides a simple 

method of compacting class clusters and frequently reducing their overlap as a result. 
 

 

2.3  Linear Rotational Transform Features: 
In this linear transform, feature values are formed from the weighted summation of the pattern attributes 
such that an M-dimensional feature vector, F, is formed from an N-dimensional pattern attribute vector, A. 
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A diagramatic representation of this transform shows that a new set of rotated axes are effectively defined 

by the transfrom matrix W and the feature values are the projections of the data onto the new axis set. 
Ideally, the projections of different classes of data onto the new axis set would be more separated than their 

projections onto the pattern space axis set.  

 

There is no closed analytic method of finding W  and it is most easily evaluated by  gradient descent 

optimisation of its coefficients to maximise classification accuracy or some measure of class separation. If 

classification accuracy is used as the performance measure, the surface on which the optimisation takes 
place is quadratic and learning can be made very reliable. 

 

2.4 Non Linear Transformations: 
Although the linear transform may be able to enhance the separation of classes which occupy a single 
contiguous region of the pattern space, it cannot cause disjoint regions to merge. To do this requires a non-

linear transform. Again, there is no closed analytic method of finding an optimal non-linear transform and if  

gradient descent optimisation is used, it is completely equivalent to the training of an MLP. This is exactly 

the approach that we set out to avoid! 

 
A more practical approach is to explicitly define a single type of non-linear transform which is known to be 

useful in merging disjoint class regions in a wide variety of pattern domains. The chosen non-linear 

transfrom forms features from the products  of selected pattern attributes. Such a transform is useful if the 

class type is defined by the relationship between attribute values rather than their individual absolute values. 

A simple example is the 2-dimensional EX-OR  function in which class 1 patterns have values [-1,1] or [1,-
1] and class 2 patterns have values of [1,1] or [-1,-1]. It can be seen that the product of the co-ordinate 

values for class1 patterns is always -1 and  +1 for class 2. Thus simple linear separation is possible between 

the classes in the feature space formed by the product of the pattern space attributes. Formally the kth 

feature value is defined as: 
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There is considerable evidence that this type of feature is often useful in the classification of both data from 

the physical world and symbolic data and several neural network architectures have been developed which 

are designed to find this type of feature. An example is the "higher order network" described by Maxwell 

and Giles [6] in which the weights of a single layer linear perceptron are made equal to the computed 
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average value of the products of chosen pattern attrributes. An alternative approach is described by Durbin 

and Rumelhart [7] who propose a multi-layer perceptron  in which pattern attributes are scaled and logged 

before being added by the hidden units of the network. This operation corresponds to forming the product 

of the attributes, each raised to a power equal to the input weights.  

 
Both of these approaches place product features in a neural network context. However, it is proposed here, 

that these features should be explicitly evaluated before using a neural net or conventional classifier so that 

the classifier training is simplified and  made more reliable. 

 
 

3.0 Data  Analysis and Visualisation Techniques 
 
3.1 Looking For Clusters: 
As discussed in the previous section, successful pattern classification depends upon all the examples of 

different classes of pattern lying in well separated clusters within a suitably chosen feature space. The 
feature space may just be the original pattern space or, more usually, its dimensions are formed by a 

transformation of the original attributes. If different classes of pattern lie in separate clusters, class 

boundaries can be defined between the clusters and an unknown pattern is classified simply by finding in 

which class region the pattern lies. 

 
It is therefore very desirable to be able to visualise a set of data and see if it consists of separate clusters. 

This would present no problem if the data were only two dimensional but in practice it has high 

dimensionality and direct drawing of the data in a 2-dimensional form is impossible. 

 
A solution to the visualisation of high dimensional data is provided by Sammon's Mapping [4]. In this  
technique, the set of data points in N-dimensional space is mapped to an equal number of corresponding 

points in a 2-dimensional space. The relative  positions of the 2-dimensional points are iteratively modified 

until their relative distances mirrors as closely as possible the relative  distances between pairs of points in 

the N-dimensional space. Thus, if clusters exist in the N-dimensional space, corresponding clusters will be 

formed in the 2-dimensional space which can easily be plotted. 
 
The iterative adjustment of the positions of the points in 2-dimensional space is done using a gradient 

descent minimisation of a mapping error, E, which is defined as the average of the squared difference 

between the distance of each pair of points in the N-dimensional space and a corresponding pair of points in 

the 2-dimensional space.  
 

Let the kth N-dimensional vector in the set of patterns to be visualised be denoted as Xk  and the 

corresponding 2-dimensional vector be Yk. Assuming that there are a total of M examples in the data set, 

there are M points in the N-dimensional space and 2-dimensional space. The squared distances between the 

ith and jth point in the N and 2-dimensional spaces are dx(i,j) and dy(i,j) respectively and these can be 

expressed as: 

 

d
x

( i , j )   =   ∑
l = 1

N

 ( x
i , l

  -   x
j , l

)
2

. . . 4

 
 

d
y

( i , j )   =   ∑
l = 1

2

 ( y
i , l

  -   y
j , l

)
2

. . . 5

 

Where xi,l and yi,l are the values along the lth  dimension of Xi and Yi respectively. 

 

A measure of the total difference between the distances of pairs of points in the N-dimensional and 2-
dimensional spaces is therefore: 
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Usually the initial values of Yk are set randomly and are iteratively modified using the steepest descent 

algorithm: 
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The value of the derivitive of E with respect to the positions of each of the points in the 2-dimensional 
space is found by chain differentiating equation 6 and 5. 

 

 

3.2 Measuring The Usefulness of Pattern Attributes: 
A classical technique for assessing the usefulness of pattern attributes in discriminating between different 

classes of pattern is by measuring the mutual information  provided by each attribute [2].  

 

The mutual information provided by a particular attribute is a measure of the correlation between its value 

and the occurrence of particular classes. Thus an attribute  which always has a value of '1' when different 
examples of one particular class occurs and has a value of '0' for all examples of other classes is intuitively a 

useful attribute and carries a high mutual information. Conversely, a feature which may  have a value of  '1' 

or '0' with equal probability regardless of the class of input pattern is useless and carries no mutual 

information. 

 

The mutual information provided by each attribute can be calculated from a set of pattern examples whose 

classes are known by using the concept of entropy. The entropy of a variable is defined as the average of the 

base two logarithm of the probabilities of each of its possible values and is measured in bits. Thus a variable 

which can have one of two values with equal probability will have an entropy of 1 bit whereas a variable 

which can have one of four values with equal probability has an entropy of 2 bits.  Entropy is therefore a 
measure of the uncertainty about the value of a variable. 

 

This idea can be applied to the evaluation of the mutual information provided by a pattern attribute by first 

claculating the entropy of the class set. Let Ck denote the kth class of pattern  and P(Ck) be the probability 

of occurrence of a pattern of class Ck. Before any attributes are examined, the average uncertainty  about 

the  class of an unknown pattern is given by the entropy of the class set, H(C). 
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If the entropy of the class set is now calculated given that the lth possible value of the ith  attribute value 

ai(l) has been observed, the attribute conditional entropy of the class set, H(C|ai),  is obtained. This measure 

is evaluated by averaging over all possible feature values and classes. 

H(C|a i ) = − P(Ck

l=1
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Where P(Ck , ai(l)) and P(Ck | ai(l)) are the joint and conditional probabilities of a pattern of class Ck and 

the attribute ai(l), and Li is the number of quantised levels of the ith attribute. 

 

If the feature, ai,  is useful for discriminating between classes, the conditional entropy will approach zero, 

indicating that the attribute almost completely determines the class. Conversely,  the conditional entropy 

associated with a poor attribute will be almost as high as the unconditional entropy, indicating that almost 

no information is gained by knowing its value. Thus the information about the class of a pattern given by a 

particular attribute is simply measured as the difference between the original class set entropy and the 

attribute conditional entropy. This is the mutual information, I(C,ai),  of the attribute. 

            

I(C ,  a
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The probability distributions, P(Ck | ai) and P(Ck) are estimated from the set of class labelled pattern 

examples and are then used in equation 9 to derive a mutual information value for each attribute. 

 
3.3 Correlation Analysis: 
An alternative method of assessing the usefulness of pattern attributes is by measuring their correlation with 

each of the possible classes of pattern. An attribute whose value is highly correlated with a particular class 

is intuitively more useful than an attribute whose value varies widely in different examples of patterns of the 
same class. 

 

The correlation between pattern class and attribute value can be evaluated using the usual definition of 

correlation coefficient, Rxy: 
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. . . 11

 
 
Where x and y are the two values whose correlation is to be measured,  std(x) and std(y) are their respective 

standard deviations, and  mx and my are their mean values. 

 
Equation 11 defines the correlation coefficient between two scalar variables. However, in the class-attribute 

correlation problem, the class is a symbolic quantity and must therefore be replaced by a suitable scalar 
value before the correlation coefficient can be evaluated. This is simply done by assigning a scalar value to 

the class whose attribute correlation is being measured, and a different, but common, scalar value to all 

other classes. The value assigned is not important, and for convenience it is made unity if the class of the 

pattern is the same as the class whose attribute correlation is being measured and is made minus one if the 

pattern belongs to any other class.  
 
A complete expression for the correlation coefficient between a pattern attribute, aj, and the pattern class, 

Ci, is therefore given by R (aj , Ci) which is evaluated using N class labelled example patterns in which the 

kth example has an attribute value of ajk and belongs to class(k). 
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The variable vk is the scalar value representation of the class and: 

 vk =+1 if class(k)  = Ci  

 vk = -1 if class(k) < > Ci. 

 

If the attribute aj is not correlated with class Ci, equation 12 will return a value near zero indicating that aj 

is not a useful attribute for classifying patterns of that class. Conversely if the attribute is highly correlated 

with the class Ci, the equation will return a value near to unity, indicating that the attribute is a powerful 

discriminator for that class. 

 
 
4.0 Data Pre-Processing Strategies To Enhance Classification Accuracy 
 
In this section we examine some practical approaches to formulating input transformations which will 

enhance class separation in a given problem. The transformations can all be viewed as variants of the linear 
diagonal, linear rotational, and product transforms which were introduced in section 2. 

 
4.1 Zeroing The Mean of Pattern Attributes: 
It is unusual for the mean of each of the pattern attributes used by a classifier to be zero. However, the mean 

value of an attribute,  measured across all classes,  carries no class discriminatory information. It is 

therefore possible to form a new set of attributes with zero mean value by subtracting the mean of each 

original attribute from each attribute value.  

 
Using zero mean attributes is particularly desirable if a neural net classifier is being used because it avoids 

the need for the neural net bias weights to undergo many iterative updates until they compensate for the non 

zero mean of the input attributes. However, it should be emphasised that zeroing the means of pattern 

attributes does not effect the separability of the different classes in any way. 

 

Formally, the process of zeroing the attribute means can be expresssed as follows. If the ith attribute in the 

kth example of a class j pattern vector is aikj, the mean value of the ith attribute over all examples of all 

classes is: 
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And the new zero mean attributes are aikj: 

 aikj  =  aikj  -  E { ai } ...14 
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4.2 Normalising The Variance of Pattern Attributes: 
The dynamic range and variance of each pattern attribute used in a particular classification problem can 

vary widely depending on the way in which the attribute measurements are made, and consequently some 

form of range normalisation is required. 
 

For example,  in an electronic fault diagnosis problem, the attributes might be a current measured in 

milliamps and a resistance measured in ohms. The range of the current might be 0 to 10 and the resistance 0 

to  1000. If these attributes are used without normalisation by a classifier, such as k-nearest neighbour [5], 

which relies on measures of the Euclidean distance in the attribute space, the resistance attribute will have a 
disproportionate importance even though it may carry less discriminatory information than the current 

attribute. This is undesirable because the classification decision will be dominated by those attributes 

contributing most the Euclidean distance value. 

 

In practice, explicit attribute normalisation should not be required if parametric statistical recognisers or 
neural nets are used. In the first case, the normalisation takes place implicitly because the attribute 

probability distribution is typically modelled by a  Gaussian in which the exponent consists of the square of 

the attribute value divided by its variance .  

 

In the case of a neural net classifier, discriminatory learning is used, and theoretically the net should 
eventually learn input weights which attenuate or excentuate pattern attributes in an optimal way regardless 

of their range. In practice,  learning may be unreliable if the dynamic range of the input attributes is not 

normalised. This is because the magnitude of the learning step applied to each weight in the network is 

related to the magnitude of the inputs. If their range is too great, the learning becomes unstable, whereas if 

their range is very small, the learning becomes extremely slow. 
 

In general it is therefore good practice to explicitly normalise the range of pattern attributes before they are 

applied to any type of classifier. In the absence of any information about the discriminatory  significance of 

each of the attributes, it is intuively appropriate to normalise the variance of each attribute so that each 

contributes equally to the Euclidean distances on which classification is ultimately based. Thus, if the ith 

attribute in the kth example of a class j pattern vector is aikj, the variance of the ith attribute over all 

examples of all classes is V{ai}: 
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And the set of new attributes with normalised variance is aikj:   

α
i k j

  =   
V { a

i
}

a
i k j

. . . 1 6

 
This process of variance normalisation is an example of the diagonal linear transform described in section 

2.2 in which the diagonal elements of the transform matrix are the reciprocals of the standard deviations of 

each or the raw pattern attributes. 

 

4.3 Linear Scaling of Attributes: 
The variance normalisation described in the previous section was proposed in cases where no information is 

available about the discriminatory power of each feature and it is therefore assumed that each attribute is 

equally important.  
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However, a method of measuring the usefulness of attributes on the basis of their mutual information has 

already been described in section 3.2 and the mutual information values can be used to furthur scale the 

variance normalised attributes to form compact class clusters. Attributes which exhibit high discriminatory 

power will have a high mutual information value and are scaled up in value so that they are contribute 

proportionately more to the Euclidean distances evaluated in the classifier. Conversely, attributes which 
contribute little to class discrimination will have a low mutual information and are consequently scaled 

down. 

 

If the ith attribute in the kth example of a pattern vector of class Cj is aikj, the new attribute values are aikj 

which are given by: 
 

  

α ikj =
a

ikj
. I(C

j
,a

i
)

V{a
i
}

 ...17 

 

Once again, this pre-processing is a linear transformation in which the transform matrix only has non zero 

values on its diagonal. 

 

The mutual information of the feature ai is I(S,ai),which  can be calculated using equations 9 and 10 once 

the required probability distributions have been estimated. Equation 9 shows that the equivocation of a 

feature ai is given by: 
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In this expression it is assumed that the attribute ai has discrete values ai(l), and in some cases ai will be 

naturally discrete valued, but often it will be a continuously valued quantity. In the latter case, the 

expression for mutual information can still be used if the attributes are quantised to a set of suitably spaced 

discrete levels. Ideally a very large number of levels would be used so that the discrete representation 
approximated to the continuous value. However, in practice the number of levels which can be defined will 

be limited by the number of available examples of the attribute and by the computational effort in 

evaluating equation 9. 

 

Assuming that ai is a continuously valued feature, the required discrete distribution P(Ck | ai(l)) can be 

estimated using the following steps:  
 

 i) Divide the range of ai into a Li of uniformly spaced quantisation levels. 

 ii) Select the set of examples belonging to class Ck and quantise the values of ai in this set.  

 iii) Count the frequency with which each quantisation level is used and normalise to the  total 

number of examples. The resulting normalised frequency values are estimates of  P(ai(l)|Ck). 

 

 iv) Count the number of examples of each class and normalise to the total number of 

 examples to obtain an estimate of  P(Ck). 

  
 v) Evaluate P(ai(l)): 

P ( a
i
( l) )   =   ∑

k = 1

n o  c l a s s e s

  P ( a
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k
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 vi) Evaluate  P(Ck,ai(l)) = P(ai(l)|Ck) * P(Ck) ...19 
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 vii) Evaluate  P(Ck|ai(l))  =  P(ai(l)|Ck) * P(Ck) / P(ai(l)) ...20 

 

 

4.4 Forming Rotational Transform Features: 
The linear scaling of attributes described in previous sections does not explicitly take account of class 

separability nor does it reduce the dimensionality of the feature vectors used by the classifier. A more 

powerful form of pre-processing scheme is a linear rotational transform whose parameters are adjusted to 

maximise some measure of class separation given a feature dimensionality which is less than the original 
pattern dimensionality. A simple way of producing such a transform is by applying the raw pattern attributes 

to an MLP classifier which potentially can make its first layer  weights equal the coefficients of an optimal 

rotational transform. The weights are adjusted using back propagation of the error between the actual and 

desired output of the MLP. Unfortunately, this is exactly the system which we have been arguing to be 

unreliable. Moreover, it does not yield a rotational transform which could be used with other types of 
classifier since the input transform implemented by the first layer in the MLP is matched to the subsequent 

non-linear transforms created by the hidden layers of the MLP. 

 

A more appealing method of implementing a rotational transform which will lead to reduced dimensionality 

in the feature vectors and enhanced class separation is as follows. A feature vector is defined with M 
elements, fi, and the number of elements is made equal to the number of pattern classes. The value of fi is 

given by the weighted summation of the variance normalised pattern attributes, aj, where the weighting 

coefficients are the correlation coefficients between the ith class and the jth pattern attribute. 

 

  

f
i
= R(C

i
,a

j
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j=1

N

∑ .
a

j

V{a
j
}

 ...21 

 

The important property designed into the transform is that an attempt is made to associate each class with a 

single feature vector element and that the contributions to that element from each of the pattern attributes 
are weighted in proportion to their correlation with the class. Thus pattern attributes which are uncorrelated 

with class Ci will make no contribution to the feature value associated with Ci. 

 

The correlation coefficients are evaluated by the method described in section  3.3  and the variance of each 

attribute is given by equation 15 . 
 

 
4.5 Forming Product Features: 
Section 2.4 discussed the need for non-linear transforms to enhance class separation and to cause disjoint 

class regions in the pattern space to become merged into one contiguous region in the feature space. A 

simple non-linear transform which is known to be useful if the class type is defined by the relationship 

between attribute values rather than their individual absolute values is the product transform in which the 

elements of the feature vector, fi, are given by the product of selected pattern attributes such that: fi  =  ar . 

as . ......... at. 

 

The number of possible features which can be generated in this manner is immense and there is a problem 

in choosing which attributes should be selected to form part of a product feature. The most  straightforward 

method of finding suitable product features is by an exhaustive search in which the mutual  information or 
class correlation coefficients of all possible 2-tuple products are first measured, followed by measurements 

on all possible 3-tuple products and so on. In practice, the size of the search is likely to make it difficult to 

explore the behaviour of products whose order is greater than two. 
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5.0 Case Example of Data Analysis And Pre-Processing 
 
5.1 Description of The problems: 
Two sets of data are used as case examples. The first data set concerns fault diagnosis of electronic circuit 

cards and consists of a set of 77 pattern attributes which are measurements of current, voltage and resistance 
at various points in the circuit, along with a fault diagnosis performed by a human expert. There are eleven 

types of faults possible,  corresponding to the failure of individual components such as relays and fuses.  

 

The complete data set consists of 290 examples of faulty cards, each example consisting of a vector of  77 

real valued pattern attributes, (the measurements), followed by a one out of eleven code to represent the 
type of fault. This data is characterised by very wide variations in range for the different measured attributes 

as well as a wide range in relative importance in discriminating between the different fault classes. 

 

The second data base concerns the behaviour of a financial system. Each example consists of  sixteen real 

valued attributes of the system  along with a single two valued class attribute. The complete data base 
contains 980 different examples of seventeen dimensional vectors.   

Some of the real valued pattern attributes used in this data are arbitrary encodings of symbolic quantities in 

the raw data and any classifier must therefore deal with the peculiarities of the chosen encoding, moreover, 

the scalings of the different attributes is quite arbitrary in the raw data, and this presents a complex task to 

the classifier. 
 

The pre-processing and data analysis techniques described earlier in this paper have been applied to both 

these databases in order to gain insight into the structure of the data and hence determine the suitability of 

different types of classification algorithm to the data. We commence the investigation by  analysing the raw 

form of both data bases using measurements of the correlation between each of the pattern attributes and the 
class of the pattern, the mutual information of each of the attributes, and finally Sammon's Mapping 

technique. 

 
5.2 Analysis of Raw Financial Data: 
Figure 1 shows the values of the correlation between each of the sixteen attributes of the financial data and 

the class attribute. To provide a comparative scale in these results, the correlation of the  class attribute with 

itself is shown as well as its  correlation with the input attributes. The self correlation of the class attribute 

is, of course, unity.  
 

Figure 1 shows very clearly which attributes are important in determining the class of the pattern, and could 

be used as the basis of attribute selection if it was desired to reduce the dimensionality of the pattern 

examples. Alternatively, the coefficients could be used to decide on which attributes should be collected in 

future. 
 

Figure 2 shows the mutual information values of the attributes of the financial data. It should be noted that 

this is a two class problem with roughly equal probabilities of occurrence for each class. The entropy of the 

classification is therefore 1 bit. Figure 2 shows that attribute 5 has a mutual information of 0.9 bits which 

implies that, using this attribute alone for classification, would leave a residual classification entropy of only 

0.1 bits. This can be interpreted as a probability of correct classification of 2
- 0.1

 . 

 

Finally, we examine the distribution of the pattern examples in the pattern space using Sammon's Mapping 

technique. This is presented in Figure 3 which shows very clear separation of the two classes of pattern. In 

fact, the figure indicates that a simple linear discriminant function classifier would successfully classify all 

the examples in this data set. 

 

5.3 Analysis of The Raw Fault Diagnosis Data: 



 

 
 
 
 

12 

March 2, 2005 

The same analysis techniques were applied to the raw fault diagnosis data. Due to the difficulty of plotting 

correlation and entropy values for all 77+11 attributes in this data set, only the results for the first 53 pattern 

attributes and 11 class attributes are presented. These results adequately show the form of the data. 

 

Figure 4 shows the correlation coefficients between the pattern attributes and an arbitrarily chosen class 
attribute, class attribute 9. In this data it is evident that no single attribute is very strongly correlated with 

the class attribute. One point of interest is that significant correlations exist between the class attributes. 

Specifically, class attribute 5 is negatively correlated with class attribute 9, implying that the occurrence of 

a class 5 fault can be used as evidence against the occurrence of a class 9 fault on the same circuit.  

 

Figure 5 shows the mutual information values of the attributes of the fault diagnosis data. In this case there 

are eleven classes and if these were equiprobable, the entropy of the classification would be between 3 and 

4 bits. Examining the attribute mutual information values, it is evident that no single attribute has a mutual 

information greater than 0.83 bits, and hence only poor classification would be expected by use of any 

individual attribute. It also suggests that it may be necessary to form new, more discriminatory features, if 
accurate classification is required. Such features might be formed from the non-linear transformation of the 

raw data. 

 

Figure 6 presents the Sammon Map for the raw data. To simplify the map, the data has been re-defined as 

belonging to class 9 or not belonging to class 9. Evidently the data consists of a large number of examples 
of both classes which are very close together, and a few rogue points  which are relatively far apart. The 

automatic normalisation of scales in the Sammon Mapping routine means that it is not possible to see if the 

majority of data examples, which lie in the bottom left corner of the map, form separate class clusters.The 

separability of the class clusters will be made more apparent in subsequent sections in which mappings of 

normalised data are presented. 

 
5.3 Analysis of Variance Normalised Financial Data: 
It has previously been argued that in the absence of any information about the relative importance of 
different pattern attributes, their variances should be normalised prior to use by a classifier. Variance 

normalisation will not change the correlations between pattern attributes and class attributes, nor will it 

effect the mutual information values of the attributes. However, it will cause the class clusters to become 

more less elongated and hence make it easier to visualise their intrinsic separability. This is demonstrated in 

Figure 7 which shows the Sammon Mapping for the variance normalised financial data. Comparison with 
the Sammon Map for the raw data shows that the clusters in the normalised data are more uniformly shaped, 

and in some cases this may make the data more easily separable. However, this is not guaranteed. 

 

5.4 Analysis of Normalised Fault Diagnosis Data: 
Similar results are shown for the normalised fault diagnosis data in the Sammon Map of Figure 8. Again, 

the data has been re-defined as class 9 or not class 9 to simplify presentation. The map shows that the 

classes cluster rather poorly, and that there are several non-contiguous regions associated with each class. 

This implies that simple linear classification would not work well and that either a non-linear classifier such 

as an MLP would be required, or that new features should be formed by the non-linear transformation of the 
original attributes.  

 
5.5 Analysis of Mutual Information Scaled Financial Data: 
We have previously argued that scaling pattern attributes by their mutual information (MI) values before 

they are used by a classifier can improve class cluster separability. This is demonstrated by the Sammon 

Map of Figure 9 for the financial data after MI scaling. Comparison of this map with the map for the 

unscaled data shows the dramatic improvement in class separation which is possible with this technique. A 

practical consequence of pre-processing data in this manner, would be a reduction in the complexity 
required of the subsequent  classifier, and hence better generalisation performance. 

 

5.6 Analysis of Mutual Information Scaled Fault Diagnosis Data: 
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Unfortunately, MI scaling cannot ameliorate the problem of class cluster non-contiguity which was 

evidenced in the Sammon Map of the fault diagnosis data in Figure 8. Figure 10 shows the Sammon Map of 

the same data after MI scaling and there is no obvious change in the separation of the class examples. 

 

5.7 Analysis of Rotationally Transformed Financial Data: 
It is often desirable to rotationally transform a pattern set  so as to enhance class separability and reduce the 

dimensionality of the resulting feature space in which classification will be performed. We have suggested 

that a simple rotational transform is given by using the coefficients of correlation between of the pattern 

attributes  and each of the class attributes. In the case of the financial data, there are only two classes and so 
the transform maps the 16 pattern attributes to just one feature on which classification can be performed. 

The usefulness of the resulting feature is demonstrated by measuring its correlation coefficient with the 

class attribute as shown in Figure 11. In this particular case, the correlation of the new feature is 0.89 which 

is marginally less than the correlation between the best pattern attribute and the class. However, other 

experiments have shown that if the input pattern to the transformer only consists of attributes having rather 
low class correlation, the class correlation of the output of the transform is usually much higher than the 

correlations of the individual pattern attributes. The transform is therefore able to combine the 

discriminatory power of individual attributes into a single feature. 

 

The Sammon Map of the one Dimensional feature generated by the rotational transform of the financial data 
is presented in Figure 12 which indicates that, with the exception of three pattern examples, the classes are 

completely separable in the new one dimensional feature space. This slight reduction in separability might 

be a small penalty to exchange for the reduction in classifier  complexity which results from using the low 

dimensional feature. 

 

5.8 Analysis of Rotationally Transformed Fault Diagnosis Data: 
Similar results are presented for rotationally transformed fault diagnosis data in Figures 13 and 14. Figure 

13 shows the correlation coefficient between the single dimensional feature formed by  rotationally 

transforming the 77 dimensional pattern attribute vector, and comparison with the correlation coefficients of 
the individual pattern attributes in Figure 4 shows a slight improvement. Figure 14 shows the Sammon Map 

for the transformed data from which it can be seen that class separation is slightly improved compared to 

the untransformed data shown in Figure 8. 

 

5.9 Analysis of Product Features Formed From Attributes of Financial Data: 
We have argued earlier in the paper that the class of a pattern is frequently determined by the relationship 

between its attributes rather than their absolute values. This suggests that useful class information might be 

gained from new features which are formed from the products of the original pattern attributes. Clearly, the 

number of possible product terms is enormous, and so we only aim to illustrate the process by selecting 
features which are formed by the product of one arbitrarily chosen pattern attribute with all the other 

attributes. It is important to use pattern attributes whose mean value has been set to zero, so that the new 

product features contain no components of the original attributes. In the case of the financial data, the new 

features are formed from the product of attribute 1 with all other attributes. 

 
Figure 15 shows the class correlations for the resulting features, which although small in this case, could be 

usefully used in conjunction with the original attribute set to improve class separation. Figure 16 shows the 

corresponding Sammon Map, from which it can be seen that some class separation is possible using the new 

product features by themselves. 

 
5.10 Analysis of Product Features From Attributes of Fault Diagnosis Data: 
Similar experiments have been performed on features formed from the products of pairs of pattern attributes 

in the fault diagnosis data. Again, the chosen product pairs are pattern attribute 1 with all other attributes. 
The correlation coefficients for the product features are shown in Figure 17 from which it can be seen that 

the correlation for some of the new features is slightly higher than that of the original attributes. This is an 

important result because it suggests that class separation, and hence classifier performance, could be 
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significantly improved by selecting the best product features and best original  features and using them in 

combination. 

 

Confirmation of the usefulness of the product features from this data base is given by their mutual 

information values which are shown in Figure 18. These results show that one of the product features has an 
MI value which is significantly higher (1.0 bits) than the MI values of any of the original attributes. 

 
 
6.0 Conclusions 
 
This paper has argued that the type of data which is generated in decision support problems is often ill 
suited to conventional statistical classifiers because it contains a mix of symbolic and scalar values,  the 

dynamic range of the data may be unlimited,  and it does not always change smoothly as the state of the 

system generating the data changes.  

 

In recent years, a popular solution has been to use artificial neural networks for classifying such data 
because the neural net performs discriminatory learning and can theoretically learn to suitably pre-process 

the data internally before classification. In practice, such learning is unreliable using currently available 

training algorithms and a better approach may therefore be to use a very simple neural network or statistical 

recogniser to which is input explicitly pre-processed pattern data.  

 

This paper has reviewed the pattern classification problem and examined various pre-processing strategies 

which could be used to simplify the classification of a given data set. In particular, the use of normalisation, 

mutual information scaling, rotational transforms and product features have been considered.  

In order to assess the effects of these pre-processing schemes, a number of data structure analysis tools have 

been presented which can provide insight into the structure and "classifiability" of a data set. 
 

The use of the pre-processing strategies and the data analysis tools has been demonstrated using two case 

examples. The first is data concerning a financial system and the second involved the diagnosis of faults in 

an electronic system. In both cases, it has been shown that significant improvements in class separability are 

possible using quite simple and explicit pre-processing.  
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Fig1. Class - Attribute Correlation Coefficients of Unprocessed Financial Data  
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Fig 2. Mutual Information of The Attributes of The Financial Data 
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Fig4. Class - Attribute Correlation Coefficients of Unprocessed Fault Diagnosis Data  
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Fig 5. Mutual Information of The Unprocessed Attributes of The Fault Diagnosis Data 
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Fig 11. Class - Attribute Correlation Coefficients of Rotationally Transformed Financial Data  
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Fig 13. Class - Attribute Correlation Coefficients of Rotationally Transformed Fault Diagnosis Data  
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Fig 15. Class - Attribute Correlation Coefficients of Attributes Formed From the Product of  
Attribute 1 and All Other Attributes of Financial Data  
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Fig 17. Class - Attribute Correlation Coefficients of Attributes Formed From the Product of  

Attribute 1 and All Other Attributes of Fault Diagnosis Data  
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Fig 18. Mutual Information of Features Formed From The Product of Attribute 1 and All Other Arributes in 

the Raw Fault Diagnosis Data. 


